US009354926B2

a2 United States Patent 10) Patent No.: US 9,354,926 B2
King-Smith et al. (45) Date of Patent: May 31, 2016
(54) PROCESSOR MANAGEMENT VIA THREAD 7,802,255 B2* 9/2010 Pilkington 718/102
STATUS 7,882,379 B2* 2/2011 Kanakogi 713/322
8,302,098 B2* 10/2012 Johnson et al. 718/102
R Qi . 2002/0115699 Al* 82002 Buckingham 514/369
(75) - Inventors: g‘;narsd f; K:Ii% E)I;"th’ LEFZKa:me’ 2003/0018685 Al* 1/2003 Kalafatis etal. 709/102
(US); Bret R, Olszewski, Austin, 2006/0095908 Al* 5/2006 Nortonetal. 718/100
TX (US); Stephen Rees, Bowmanville, 2006/0136919 Al* 6/2006 Aingaran etal. 718/100
CA (US); Basu Vaidyanathan, Austin, 2007/0050771 Al* 3/2007 Howland et al. 718/102
TX (US) 2007/0074219 Al* 3/2007 Ginsberg GO6F 1/3203
718/102
(73) Assignee: INTERNATIONAL BUSINESS 2008/0013450 Al* 1/2008 Worleyetal. 370/230
MACHINES CORPORATION, 2009/0217276 Al* 82009 Brenner ... GOG6F 9/4856
Armonk, NY (US) 718/102
2009/0320030 Al* 12/2009 Ogasawara 718/102
(*) Notice: Subject to any disclaimer, the term of this 2010/0138841 Al* 6/2010 Diceetal. ...coccoocoecie 718/107
patent is extended or adjusted under 35 2011/0023040 Al* 12011 Hendry GOG6F 9/3879
U.S.C. 154(b) by 364 days. 718/102
(21) Appl. No.: 13/069,338 FOREIGN PATENT DOCUMENTS
.No.: R
WO 0039677 7/2000
(22) Filed: Mar. 22,2011
* cited by examiner
(65) Prior Publication Data
US 2012/0246652 Al Sep. 27, 2012 Primary Examiner — Lewis A Bullock, Ir.
(51) Int.CL Assistant Examiner — Melissa Alfred
GOGF 9/46 (2006.01) (74) Attorney, Agent, or Firm — James L. Baudino
GO6F 1/26 (2006.01)
GO6F 1/00 (2006.01)
GO6F 9/48 (2006.01) (57) ABSTRACT
(52) US.CL
CPC ..o GOG6F 9/4843 (2013.01); YO2B 60/144 ~ Various systems, processes, and products may be used to
(2013.01) manage a processor. In particular implementations, managing
(58) Field of Classification Search a processor may include the ability to determine whether a
None thread is pausing for a short period of time and place a wait
See application file for complete search history. event for the thread in a queue based on a short thread pause
occurring. Managing a processor may also include the ability
(56) References Cited to activate a delay thread that determines whether a wait time

U.S. PATENT DOCUMENTS

6,931,641 B1* 82005 Daviscccccoenee. GOG6F 9/3802

712/228

7,783,787 Bl 8/2010 DeBergalis et al.

DELAY
THREAD
INITIATED
?

associated with the pause has expired and remove the wait
event from the queue based on the wait time having expired.

11 Claims, 6 Drawing Sheets

OTHER
THREAD
TO RUN

US 9,354,926 B2

Sheet 1 of 6

May 31, 2016

U.S. Patent

L "Old

[
3ISNvd
avddHl
AV13d

9cl

avadHL AV13d
AIVAILOV

NN OL
avadHiL
d3HLO

0clL

A

dv3dHL Aav3d
J1VAILOY

/

ovl

av3dHL AV13d 31VILINI N
9Ll

é
d31VILINI
av3dHL

avIdHL ¥3H10
JIVAILOV

vZl
s

0l

AV13a 4"

IN3NO NI AVIHHL J04
INIAT LIVM 30V1d [\ 301

¢
asNvd
avddHL
1HOHS

US 9,354,926 B2

Sheet 2 of 6

May 31, 2016

U.S. Patent

¢ 9Ol4
JAON J3aMOd | d3NIL
H3AMOT I1VILINI FHVMAYEVYH 13S
S S
8¢c {44
3N3INO NOHH
A|
IN3IAT LIVAA SAONTH
/
qlc
av3adHl Av13da
AI
J1VAILOV3A
S ~N
00¢ 802

0cc

a3didx4
dNIL
1IVM

v0¢

3aN3ANO

NI LN3IA3
1IVM

advidHl

US 9,354,926 B2

Sheet 3 of 6

May 31, 2016

U.S. Patent

Ve¢ OlId

ﬁ u ANIL LIVM F1VIOOSSY

av3dHL HLIM

NVHL

H3ONOTINIL
ASNOdS3d
d3153dx4

ZLe
y S 1S3NO3Y
| avauHL 1suI4 |, SNOILVH3dO VIVa ¥O4 IIL
JIVALLOY [T] ¥3HLO WHO4y3d 3ISNOJSIY
< d3103dX3
9Le 80¢
@ f y0g

oom\\\

av3dHl
d04

1S3N03d

viva

US 9,354,926 B2

Sheet 4 of 6

May 31, 2016

U.S. Patent

d€ Ol

JAOW Jd3MOd

JAIL 1LIVM d3-01S
OL JNIL INTFHHNO [e
STFHVANOD J0SS3O0dd

N\ zee

a3a33aox3
ANIL LIVM
d3dols
9G6¢€

NN OL

gpe

av3dHL
d3H10

12

A 4

avddHl
ddH10
HO1VdSId

[
aSNvd
av3adHlL

dIMOT

A

12
avddHl
a3snvd

NNd OL
avadHlL
d3H1O0

9ce

A%

JAOW Jd3MOd
d3IHOIH

7
00¢ \ 09¢

4dONW J3MOd
H3HOIH

"\ 89¢

S

av3dHl d3snvd sY
dvadHL 31vNOIS3d

F Y
N

AHOWN3I NI
ANIL LIVM FH01S

m«w /mmm

US 9,354,926 B2

Sheet 5 of 6

May 31, 2016

U.S. Patent

¥ 'Old N
NOILILY¥Vd H¥3HLO
Y04 av3yHL NNy
0z . "\ oup
A NOILILYYd H¥3HLO
Ol HOLIMS /

\ SNOILILIVd HOLIMS 497

R

1444

&

HOLIMS
NOILILHVd
d04 JNIL
IN3IDI44NS

80¥

4
NOILILdvd
d04
NNd OL
SAvIdHL

00v \

14814

US 9,354,926 B2

Sheet 6 of 6

May 31, 2016

U.S. Patent

G Old

wiva b %

acc (SINOILYDITddY

o
(=)
{9}

0¢s
// INILSAS O/l

GES
]
1€G L
\\
— \
d3OVNVYIA INIL LIVAA
Y3Imod
TSI avagHL //
Y3HOLVASIa -~ Q
pes TANGD
9eG IWILSAS ONILVIIdO
\\
z00 SNOILONYLSNI
Lec AIOWIN

JOSS300dd
0LS \

NILSAS d31NdINOD

US 9,354,926 B2

1
PROCESSOR MANAGEMENT VIA THREAD
STATUS

BACKGROUND

The present invention relates to processors, and more spe-
cifically to processor management.

Advanced processors can typically handle a number of
threads (e.g., four), which may be subparts of a software
process. The threads are usually executed in a time-division
multiplex manner by the processor and may share the same
memory (e.g., registers) on the processor or have memory
assigned to them (e.g., particular registers). During execu-
tion, a software thread may issue a data request (e.g., to a data
source). The software thread may then poll to check whether
the data request has been fulfilled.

BRIEF SUMMARY

In one implementation, a process for managing a processor
may include determining whether a thread is pausing for a
short period of time and placing a wait event for the thread in
a queue based on a short thread pause occurring. The process
may also include activating a delay thread that determines
whether a wait time associated with the pause has expired and
removing the wait event from the queue based on the wait
time having expired. The process may, for example, be imple-
mented by a processor.

The details and features of various implementations will be
conveyed by the following description, along with the draw-
ings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a flowchart illustrating an example process for
managing a processor via thread status.

FIG. 2 is a flowchart illustrating another example process
for managing a processor via thread status.

FIGS. 3A-B are a flowchart illustrating an additional
example process for managing a processor via thread status.

FIG. 4 is a flowchart illustrating another example process
for managing a processor via thread status.

FIG. 5is a block diagram illustrating an example computer
system for which a processor may be managed via thread
status.

DETAILED DESCRIPTION

Processors may be managed via their thread status by a
variety of techniques. In certain implementations, for
example, when it is determined that a thread is pausing for a
short period of time (e.g., when the thread is issuing a data
request), the thread may be designated as a paused thread
(e.g., by placing a wait event for the thread in a queue) so that
the thread will not be considered as being ready to run. Addi-
tionally, a delay thread may be activated. The delay thread
may run at a low priority and determine, among other things,
whether a wait time associated with the pause has expired.
The delay thread may, for example, provide a better indica-
tion regarding a processor’s resources and allow a lower
power mode to be entered for the processor. Once the wait
time has expired, the first thread may be considered as being
ready to run.

A single-core processor with a single hardware thread is
used in illustrating the following systems, processes, and
techniques. However, current microprocessor chips, also

10

15

20

25

30

35

40

45

50

55

60

65

2

known as processors, can include multiple cores, which can
each include multiple hardware threads. The described sys-
tems, processes, and techniques may also be able to operate in
a multiple core and/or a multiple hardware thread environ-
ment.

As will be appreciated by one skilled in the art, aspects of
the present disclosure may be implemented as a system,
method, or computer program product. Accordingly, aspects
of the present disclosure may take the form of an entirely
hardware environment, an entirely software embodiment (in-
cluding firmware, resident software, micro-code, etc.), or an
implementation combining software and hardware aspects
that may all generally be referred to herein as a “circuit,”
“module,” or “system.” Furthermore, aspects of the present
disclosure may take the form of a computer program product
embodied in one or more computer readable medium(s) hav-
ing computer readable program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of' a computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this disclosure, a computer readable storage
medium may be a tangible medium that can contain or store a
program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any medium, including but not
limited to wireless, wireline, optical fiber cable, RF, etc. or
any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the disclosure may be written in any combination
of one or more programming languages such as Java, Small-
talk, C++ or the like and conventional procedural program-
ming languages, such as the “C” programming language or
similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer, or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN), a wide area network (WAN), or a wireless network

US 9,354,926 B2

3

(e.g., Wi-Fi or cellular), or the connection may be made to an
external computer (for example, through the Internet using an
Internet Service Provider).

Aspects of the disclosure are described below with refer-
ence to flowchart illustrations and/or block diagrams of meth-
ods, apparatus (systems), and computer program products
according to implementations. It will be understood that each
block of the flowchart illustrations and/or block diagrams,
and combinations of blocks in the flowchart illustrations and/
or block diagrams, can be implemented by computer program
instructions. These computer program instructions may be
provided to a processor of a general purpose computer, spe-
cial purpose computer, or other programmable data process-
ing apparatus to produce a machine, such that the instruc-
tions, which execute via the processor of the computer or
other programmable data processing apparatus, create means
for implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other device to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions that implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus, or other devices to produce a computer implemented
process such that the instructions that execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

FIG. 1 is a flowchart illustrating an example process 100
for managing a processor via thread status. Process 100 may,
for example, be implemented by a computer system of which
the processor is a component. In particular implementations,
process 100 may be implemented by an operating system.

Process 100 calls for determining whether a thread has
paused for a short period of time (operation 104). During
operation, threads may pause for a variety of reasons, such as
when they are waiting for a data request to be fulfilled (e.g.,
data from another thread or an operation by a remote
resource), and the threads may provide a notification of their
status by posting an update (e.g., to the operating system).
The pauses may be of varying length. A short thread pause is
typically less than 100 microseconds, and for some imple-
mentations, it may be less than 20 microseconds. If a short
thread pause is occurring, process 100 calls for continuing to
wait for such a thread pause.

Once a thread is pausing for a short period of time, process
100 calls for placing a wait event for the thread in a queue
(operation 108). The wait event placement may, for example,
be accomplished by placing a wait time for the thread in a
queue for waiting threads. In particular implementations, the
thread may also be placed in a queue, which may be ordered
based on wait time.

Process 100 also calls for determining whether a delay
thread has been initiated (operation 112). A delay thread may,
for example, be used to address threads that have been des-
ignated as paused. If a delay thread has not been initiated,
process 100 calls for initiating the delay thread (operation
116).

Once a delay thread has been initiated, process 100 calls for
determining whether there is another thread ready to run

10

15

20

25

30

35

40

45

50

55

60

65

4

(operation 120). Another thread may be ready to run, for
instance, if it was previously ready but of a lower priority than
the pausing thread. If there is another thread ready to run,
process 100 calls for activating (e.g., dispatching) the other
thread (operation 124). The other thread may then run accord-
ing to its own logic.

Process 100 also calls for determining whether a pause has
occurred in the other thread (operation 128). If no pause has
occurred, process 100 calls for waiting for a pause to occur.
Once a pause occurs, process 100 calls for again determining
whether there is another thread ready to run (operation 120).

Ifthere is not another thread ready to run, process 100 calls
for activating the delay thread (operation 132), which may
then run according to its own logic, an example of which will
be discussed below. The delay thread may run at a priority
close to or just above that of an idle loop. Process 100 also
calls for determining whether a pause has occurred in the
delay thread (operation 136). A pause in the delay thread may,
for example, occur because the delay thread is complete or it
is time for the waiting thread to become active. Once a pause
has occurred in the delay thread, process 100 calls for acti-
vating a thread that is ready to run (operation 140). A thread
that is ready may, for example, be the thread that originally
paused.

FIG. 2 is a flowchart illustrating another example process
200 for managing a processor via thread status. In particular,
process 200 may be delay thread implemented by an operat-
ing system. Process 200 may, for example, be implemented
by a computer system of which the processor is a component.

Process 200 calls for determining whether a wait event for
a thread is in a queue (operation 204). A wait event may, for
example, have an associated wait time and have been placed
in a queue by a previous process. If a wait event for a thread
is not in the queue, process 200 calls for deactivating the delay
thread (operating 208).

If, however, a wait event for a thread is in the queue, process
200 calls for determining whether an associated wait time has
expired (operation 212). If the wait time has expired, process
200 calls for removing the wait event from the queue (opera-
tion 216). In particular implementations, this may also entail
removing the associated thread from a queue and placing it in
a regular thread queue. The associated thread may then be
activated (e.g., by the operating system).

If the wait time has not expired, process 200 calls for
determining whether the wait time is large (operation 220). A
wait time may be large, for example, if it is longer than 100
microseconds. If the wait time is large, process 200 calls for
setting a hardware timer (operation 224) and initiating a lower
power mode for an associated processor (operation 228).

If, however, the wait time is not large, process 200 calls for
looping until the wait time has expired at operation 212. This
loop may be performed with a priority that is near or just
above the idle loop priority.

Process 100 and process 200 may provide a variety of
features. For example, by allowing a thread above an idle
thread’s priority to be run, the processor time available for
performing actual operations may be more accurately deter-
mined. For instance, the processor utilization in performing
the loop may be credited to idle processor time as opposed to
busy time.

Moreover, in certain implementations, it may be possible
to enter a lower power mode while running the delay thread,
which can conserve power. While an operating system’s idle
thread may eventually lead to a lower power mode, it typically
takes a long time to enter this mode and a long time to exit the

US 9,354,926 B2

5

mode, and in at least some implementations, processes 100,
200 are usable with operation response times on the order of
a few microseconds.

As another example, the operations could be implemented
by modifications to an operating system’s idle thread. As
opposed to typical idle thread operations, however, the con-
ditions for entering a lower power mode are already satisfied.
Thus, a lower power mode may be entered soon (e.g., within
afew microseconds) after the idle thread activates. Moreover,
at least one set of conditions for exiting the idle thread (i.e.,
exceeding the stored wait time) is known. Thus, the idle
thread’s typical operations could be altered to provide an exit
when the stored wait time expires. The time spent executing
this portion of the idle thread may be accounted for differently
than the idle accounting.

In particular implementations, the processes may be under-
taken for several threads contemporaneously. Thus, there
could be multiple threads simultaneously paused. These
threads could, for example, be placed in a queue of paused
threads. The threads could, for instance, be ordered based on
when they will be ready to run. When this queue is populated
and there are no other threads to run beginning an idle thread
and/or entering the lower power mode may be appropriate.

FIGS. 3A-B illustrate an additional example process 300
for managing a processor via thread status. Process 300 may,
for example, be implemented by a computer system of which
the processor is a component.

Process 300 calls for determining whether there is a data
request for a first thread (operation 304). A data request may,
for example, be regarding data from a remote computer sys-
tem (e.g., a request to retrieve data from a database or a lock
request to a lock management appliance). Remote computer
systems may, for instance, be connected through an Ethernet
connection, a high-speed network fabric (e.g., Infiniband), or
any other appropriate communication network. Such a data
request may be handled through a TCP/IP transfer, remote
direct memory access, or any other appropriate protocol. The
data request may also be to part of a local computer system
(e.g., threads in the same processor exchanging data through
memory). The data request may be about to be issued, be
being issued, or have been previously issued. If there is no
data request for a thread, process 300 calls for continuing to
wait for a data request.

If there is a data request for a thread, process 300 calls for
determining an expected response time for the data request
(operation 308). The expected response time may, for
example, be based on previous data request/response sce-
narios for the thread and/or for other threads. A remote direct
memory access may, for example, take on the order of a few
microseconds (e.g., 3-12), which is typically a long time for
processors, as they may, for example, context switch software
threads in less than 1 microsecond (e.g., 0.5 microseconds).
In general, process 300 may be used with any low latency
event model.

If there is no expected response time for the data request,
process 300 calls for performing other operations (operation
312). For example, another thread could be activated or an
idle thread could be run. Once the other operations have been
performed, the first thread may be activated (operation 316).

I, however, there is an expected response time for the data
request, process 300 calls for determining whether the
expected response time is longer than a threshold (operation
320). The threshold may, for example, be preset based on
processor capabilities (e.g., time to switch between threads
and processing rate) or calculated dynamically (e.g., based on
current processor load). For instance, if the expected response
time is close to the time for the processor to switch between

15

25

40

45

55

6

threads (e.g., within a few microseconds), it may be ineffi-
cient to switch threads. If the expected response time is not
longer than the threshold, process 300 again calls for per-
forming other operations (operation 312).

If, however, there is an expected response time for the first
thread’s data request and that time is longer than the thresh-
old, process 300 calls for associating a wait time with the first
thread (operation 324). The wait time may, for example, be
the current time plus the expected response time. Process 300
also calls for storing the wait time in memory (operation 328).
The wait time may, for instance, be placed in a status table for
the first thread or a pointer to the storage location may be
used.

Process 300 additionally calls for designating the thread as
apaused thread (operation 332). The thread may, for example,
be designated as a paused thread by placing it in a queue for
paused threads and/or associating an appropriate indicator
with the thread.

Process 300 also calls for determining whether there is
another thread that is ready to run (operation 336). If there is
another thread that is ready to run, process 300 calls for
dispatching the other thread (operation 340).

Process 300 also calls for checking whether the other
thread has paused (operation 342). If the other thread has not
paused, process 300 calls for waiting for the other thread to
pause. Once the other thread pauses, process 300 calls for
again determining whether there is a thread ready to run
(operation 336). This thread may have been ready to run when
the other thread was selected to run (e.g., perhaps being
passed over because its priority was not as high as the other
thread) or have become ready while the other thread was
running. [f there is a thread ready to run, process 300 calls for
dispatching that thread (operation 340). Process 300 may
continue to check for and dispatch other threads for a number
of intervals.

If there is not another thread that is ready to run, however,
process 300 calls for determining whether there is a thread
waiting for a data response (operation 344). Determining
whether there is a thread waiting for a data response may, for
instance, be performed by examining queued threads (e.g., to
see if any have an associated waiting time) or by examining a
queue of waiting threads to if any threads are present. Ifthere
is not a thread waiting for a response, process 300 calls for
performing other operations (operation 312).

If, however, there is a thread waiting for a data response,
process 300 calls for placing the processor into a lower power
mode (operation 348). The processor may, for example, be
placed into the lower power mode by an operating system
slowing the processor’s clock and/or instruction rate. For
example, the processor may implement a thread that has a
very low priority.

While the processor is in the lower power mode, process
300 calls for the processor to compare the current time (e.g.,
system time or elapsed time since the data request) with the
stored wait time (operation 352) and determining whether the
stored wait time for the first thread has been exceeded (opera-
tion 356). The determination may, for example, be performed
by determining whether the current system time is later than
the data request time plus the expected response time, which
may be expressed as a single time (e.g., data request time plus
expected response time). If the wait time has been exceeded,
process 300 calls for placing the processor in a higher power
mode (operation 360) and activating the first thread (opera-
tion 316). If the stored wait time has not been exceeded,
process 300 calls for determining whether there is another

US 9,354,926 B2

7

thread ready to run (operation 364). Another thread may, for
example, be ready to run if it became ready during the lower
power mode.

If'there is not another thread ready to run, process 300 calls
for again comparing the current time to the stored wait time
(operation 352). If, however, there is another thread ready to
run, process 300 calls for placing the processor in a higher
power mode (operation 368) and dispatching the other thread
(operation 340).

Process 300 has a variety of features. For example, by
beingable to place a processor into a lower power mode when
no threads are ready to run and there is sufficient time, power
may be conserved and unnecessary mode conversions may be
avoided. Moreover, process 300 provides the ability to imple-
ment the timing without having to take an interrupt upon data
response receipt and/or setting hardware timers, which may
be costly to implement and take a long time to execute,
especially for sub-millisecond resolution. Additionally, by
being able to relinquish the processor, process 300 allows
other threads to be able to be run, which increases processor
utilization. Furthermore, a waiting thread may not count as
“runnable” from the perspective of utilization tools (e.g., run
queue length in virtual memory statistics), which may pro-
vide increased accuracy in computed utilization because the
wait time (i.e., the time when the process could run something
if available) could be credited to idle time in processor utili-
zation, helping to provide a better understanding of the poten-
tial capacity of the system.

Although FIG. 3 illustrates a process for managing a pro-
cessor via thread status, other processes for managing a pro-
cessor via thread status may include fewer, additional, and/or
a different arrangement of operations. For example, a process
may call for determining how much time is left until the wait
time is exceeded before allowing another thread to run or
placing a processor in a lower power mode. As another
example, operation 352 and operation 364 could be per-
formed in opposite order, operation 324, operation 328, and
operation 332 could be performed in any order, and operation
336 could be performed at different points in the process. As
a further example, operation 332 may be subsumed by opera-
tion 328.

The process of entering the lower power mode (operation
348), comparing the current time to the stored wait time
(operation 352) checking whether the stored wait time has
been exceeded (operation 356), returning to a higher power
mode if the stored wait time has been exceeded (operation
360), and checking whether there is another thread to run if
the stored wait time has not been exceeded (operation 364)
may be accomplished by a variety of techniques. For
example, before or after entering the lower power mode, a
new thread class cued to a timer could be activated. This
thread class may, for instance, be of a type that can be
executed efficiently while in the lower power mode (e.g., a
tight loop). This thread may execute during the lower power
mode until the stored wait time is exceeded or another thread
becomes ready to run.

FIG. 4 is a flowchart illustrating another example process
400 for managing a processor via thread status. In general,
process 400 is applicable to a processor that has operational
partitions. Process 400 may, for example, be implemented by
a computer system of which the processor is a component. In
certain implementations, process 400 may be used in con-
junction with the other example processes.

Process 400 calls for determining whether a first partition
has no threads ready to run (operation 404). A thread may be
initiated but not ready to run, for example, if it is has a wait
time associated with it. In implementation, each partition may

10

15

20

25

30

35

40

45

50

55

60

65

8

include a paused thread list, which may, for example, be
sorted based on the times at which the paused threads will
become active. If the first partition has threads ready to run,
process 400 is at an end.

If, however, a first partition has no threads ready to run,
process 400 calls for determining whether there is sufficient
time for switching partitions for the processor (operation
408). For instance, even though a first partition may have no
threads ready to run, there may be one or more paused threads
that have a time at which they will be ready to run. This time
may be used to determine whether there is sufficient time to
perform a partition switch.

Ifthere is not sufficient time for a partition switch, process
400 is at an end. If, however, there is sufficient time, process
400 calls for switching to another partition for the processor
(operation 412). This may, for example, be accomplished by
ceding control to a partition switching program (e.g., a hyper-
visor, available from companies such as International Busi-
ness Machines Corp. of Armonk, N.Y., Microsoft Corp. of
Redmond, Wash., and Hewlett-Packard Co. of Palo Alto,
Calif.).

Process 400 also calls for running a thread in the other
partition (operation 416) and checking whether the time for
the partition switch has been exceeded (operation 420). The
time may, for example, be based on the wait time for a thread
in the first partition. If the time has not been exceeded, process
400 calls for running another thread in the other partition
(operation 416).

Once the time has been exceeded, process 400 calls for
switching back to the first partition (operation 424). The
thread(s) in this partition may then be run, and process 400 is
at an end.

As illustrated, process 400 allows a processor to switch
partitions when there are no threads ready to run on a first
partition and there is sufficient time for making the switch.
Thus, process 400 can facilitate strategic increased utilization
for partitioned processors.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of systems,
methods, and computer program products of various imple-
mentations of the disclosure. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of code, which can include one or more
executable instructions for implementing the specified logi-
cal function(s). It should also be noted that, in some alterna-
tive implementations, the functions noted in the blocks may
occur out of the order noted in the figures. For example, two
blocks shown in succession may, in fact, be executed substan-
tially concurrently, or the blocks may sometimes be executed
in the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or the flowchart illustration, and combination
of'blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based sys-
tems the perform the specified function or acts, or combina-
tions of special purpose hardware and computer instructions.

FIG. 5 illustrates an example computer system 500 in
which a processor may be managed via thread status. System
500 includes a processor 510, an input/output system 520,
and memory 530, which are coupled together by a network
540.

Processor 510 typically includes a logical processing unit
(e.g., an arithmetic logic unit) that processes data under the
direction of program instructions (e.g., from software). For
example, processor 510 may a microprocessor, a microcon-
troller, or an application specific integrated circuit, which
may operate by reduced instruction set computer (RISC) or

US 9,354,926 B2

9

complex instruction set computer (CISC) principles. Proces-
sor 510 may also be capable of simultaneously executing
multiple independent hardware threads for execution. In gen-
eral, the processor may be any device that manipulates data in
a logical manner.

Input/output system 520 may, for example, include one or
more communication interfaces and/or one or more user
interfaces. A communication interface may, for instance, be a
network interface card (whether wireless or wireless) or a
modem. A user interface could, for instance, be a user input
device (e.g., a keyboard, a keypad, a touchpad, a stylus, or a
microphone) or a user output device (e.g., a monitor, a dis-
play, or a speaker). In general, system 520 may be any com-
bination of devices by which a computer system can receive
and output data.

Memory 530 may, for example, include random access
memory (RAM), read-only memory (ROM), and/or disc
memory. Various items may be stored in different portions of
the memory at various times. Memory 530, in general, may be
any combination of devices for storing data.

Memory 530 includes instructions 531 and data 539.
Instructions 531 include an operating system 532 (e.g., Win-
dows, Linux, or Unix) and applications 538 (e.g., word pro-
cessing, spreadsheet, drawing, scientific, etc.). Data 539
includes the data required for and/or produced by applica-
tions 534.

Operating system 532 includes a kernel 533, a dispatcher
536, and a power manager 537. Kernel 533 typically provides
a bridge between applications and the actual data processing
performed at the hardware level, and its responsibilities
include managing the computer system’s resources (e.g., the
communication between hardware and software compo-
nents). Kernel 533 includes a thread list 534 (e.g., a table),
which identifies the threads that have been initiated by com-
puter system 500. One or more of the threads on list 574 may
be currently running, ready to run, and/or paused.

Dispatcher 536 is responsible for activating the threads.
For example, once operating system 532 becomes aware that
athread is pausing (e.g., by receiving a yield call), dispatcher
536 may analyze thread list 534 to determine another thread
to activate. The threads may, for example, be activated in a
prioritized manner. If no threads are present, dispatcher 536
may run an idle thread.

Thread list 534 contains a wait time 535, which may be
associated with one or more threads. Wait time 535 may
indicate the time (e.g., physical time, processor cycles, or
other appropriate measure) after which a thread may be made
active (e.g., the data request time plus the expected response
time). The wait time may be of relatively high resolution (e.g.,
a few microseconds).

Dispatcher 536 may consider the wait time in determining
whether to run a thread. For example, if a thread that is
otherwise ready to be activated has an associated wait time
that has not been exceeded, dispatcher 536 may not activate
the thread. When a thread is associated with a wait time, the
thread could, for example, be placed at the end of thread list
534. Dispatcher 536 may then consider threads of the next
priority level.

In certain implementations, a thread with an associated
wait time may be placed on a list for waiting threads, which
could, for example, be ordered based on the wait times. Dis-
patcher 536 may check this list periodically to see whether
any threads are eligible to become active and move any appro-
priate threads to the regular thread list. In particular imple-
mentations, dispatcher 536 may select the thread on the wait
list that has the earliest ready time if it has the best priority.

10

15

20

25

30

35

40

45

50

55

60

65

10

This could result in some inversion of thread priority, how-
ever, but that should not be problematic for low processor
utilizations.

Power manager 537 is responsible for placing processor
510 in different power management states (e.g., full power,
standby, and sleep). Power manager 537 may operate in con-
junction with dispatcher 536. For example, when dispatcher
536 determines that there are no threads ready to run, power
manager 537 may place processor 510 in a lower power
mode. In the lower power mode, the processor may, for
example, operate at a reduced clock and/or instructions rate.

Network 540 is responsible for communicating data
between processor 510, input/output system 520, and
memory 530. Network 540 may, for example, include a num-
ber of different types of busses (e.g., serial and parallel).

The terminology used herein is for the purpose of describ-
ing particular implementations only and is not intended to be
limiting. As used herein, the singular form “a”, “an”, and
“the” are intended to include the plural forms as well, unless
the context clearly indicates otherwise. It will be further
understood that the terms “comprises” and/or “comprising,”
when used in the this specification, specify the presence of
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of
one or more other features, integers, steps, operations, ele-
ments, components, and/or groups therefore.

The corresponding structure, materials, acts, and equiva-
lents of all means or steps plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present implementations has been presented for purposes
of illustration and description, but is not intended to be
exhaustive or limited to the implementations in the form
disclosed. Many modifications and variations will be appar-
ent to those of ordinary skill in the art without departing from
the scope and spirit of the disclosure. The implementations
were chosen and described in order to explain the principles
of the disclosure and the practical application and to enable
others or ordinary skill in the art to understand the disclosure
forvarious implementations with various modifications as are
suited to the particular use contemplated.

A number of implementations have been described for
processor management via thread status, and several others
have been mentioned or suggested. Moreover, those skilled in
the art will readily recognize that a variety of additions, dele-
tions, modifications, and substitutions may be made to these
implementations while still achieving process management
via thread status. Thus, the scope of the protected subject
matter should be judged based on the following claims, which
may capture one or more aspects of one or more implemen-
tations.

The invention claimed is:
1. A method implemented by a computer, the method com-
prising:

determining whether a first thread is pausing;

ifthe first thread is pausing, placing a wait event for the first
thread in a queue, the wait event comprising a wait time;

in response to the wait event being placed in the queue,
determining whether a delay thread has been initiated;

if a delay thread has not been initiated, initiating a delay
thread;

inresponse to the delay thread being initiated, determining
whether a second thread is ready to run;

US 9,354,926 B2

11

if the second thread is not ready to run, activating the delay
thread, the delay thread determining whether the wait
time associated with the paused first thread has expired;
and

in response to the delay thread determining that the wait

time has expired, removing the wait event from the
queue and activating the first thread.

2. The method of claim 1, further comprising:

determining whether a thread wait event is in the queue;

and

deactivating the delay thread based on a lack of a thread

wait event in the queue.

3. The method of claim 1, further comprising placing the
wait event in the queue based on an expected pause time being
longer than a threshold.

4. The method of claim 1, further comprising:

determining whether to switch a processor from a first

partition to a second partition based on there being no
second thread ready to run;

switching the processor to the second partition based on the

there being no second thread ready to run;

determining whether the wait time has been exceeded; and

switching the processor from the second partition to the

first partition based on the wait time having been
exceeded.

5. The method of claim 4, wherein the determination of
whether the wait time has been exceeded includes analyzing
the wait time for the paused first thread.

6. A computer program product for managing a processor,
the computer program product comprising:

a non-transitory computer readable medium;

first program instructions to determine whether a first

thread is pausing;

second program instructions to, if the first thread is paus-

ing, place a wait event for the first thread in a queue, the
wait event comprising a wait time;

third program instructions to, in response to the wait event

being placed in the queue, determine whether a delay
thread has been initiated;

fourth program instructions to, if a delay thread has not

been initiated, initiate a delay thread;

fifth program instructions to, in response to the delay

thread being initiated, determine whether a second
thread is ready to run;

sixth program instructions to, if the second thread is not

ready to run, activate the delay thread, the delay thread
determining whether the wait time associated with the
paused first thread has expired; and

seventh program instructions to, in response to the delay

thread determining that the wait time has expired,
remove the wait event from the queue and activate the
first thread; and

10

20

25

30

35

40

45

12

wherein said program instructions are stored on said com-

puter readable storage medium.

7. The computer program product of claim 6, further com-
prising eighth program instructions to determine whether a
thread wait event is in the queue and to deactivate the delay
thread based on a lack of a thread wait event in the queue.

8. The computer program product of claim 6, further com-
prising eighth program instructions to place the wait event in
the queue based on an expected pause time being longer than
a threshold.

9. The computer program product of claim 6, further com-
prising eighth program instructions to:

determine whether to switch the processor from a first

partition to a second partition based on there being no
second thread ready to run;

switch the processor to the second partition based on the

there being no second thread ready to run;

determine whether the wait time has been exceeded; and

switch the processor from the second partition to the first

partition based on the wait time having been exceeded.

10. The computer program product of claim 9, wherein the
determination of whether the wait time has been exceeded
includes analyzing the wait time for the paused first thread.

11. A method implemented by a computer, the method
comprising:

determining whether a first thread is pausing;

ifthe first thread is pausing, placing a wait event for the first

thread in a first queue, the wait event comprising a wait
time, and placing the first thread in a second queue, the
first thread ordered in the second queue based on the wait
time;

in response to the wait event being placed in the first queue,

determining whether a delay thread has been initiated;
if a delay thread has not been initiated, initiating a delay
thread;

determining whether a second thread is ready to run;

ifthe second thread is not ready to run, activating the delay

thread, the delay thread determining whether the wait
time associated with the paused first thread has expired;
determining whether the wait time exceeds a threshold;
in response to determining that the wait time exceeds the
threshold, initiating a low power mode for a processor
running the delay thread; and

in response to the delay thread determining that the wait

time has expired, removing the wait event from the first
queue, returning the processor to a high power mode,
removing the first thread from the second queue, and
activating the first thread.

#* #* #* #* #*

